O _classes

class can represent a group of objects in which they all share certain attributes. so each
individual is already equipped with the general traits and can be further personalized.
A function that is a part of the class is a method

class Cat:
"""it imitates cats"""
def __init__ (, , E
"""provides name and age"""

def being_cute():
"""cat will act cutely"""
print(f'look how cute {

('kelly','7")

print(.)

my_cat.being_cute()

class Car:
def init (self,make,model,year):

it describes the car
self.make=make
self.model=model
self.year=year
self.mileage reading=0
def read_odometer(self):

it shows the mileage of the car
print(f'this car has {self.mileage reading}miles on it"')
Car('audi','A4','2019")

read_odometer()

mileage reading=66
read_odometer()

Car:
def init (self,make,model,year):

it describes the car
self.make=make
self.model=model
self.year=year
self.mileage reading=0
def read_odometer(self):

it shows the mileage of the car

print(f'this car has {self.mileage reading}miles on it")

def update_odometer(self,new_mileage):

enters the new mileage to update
self.mileage_reading=new_mileage

(‘audi','A4','2019")
(34)
O

class Car:
def _init_ (, , ,):

it describes the car

def read_odometer():

it shows the mileage of the car
print(f'this car has { . Jmiles on it')
def increase_odometer(.):

it increase the odometer

('audi','A4','2019")
(88)
@)

if the class you want to create is similar with an existing class, you can use inheritance to
copy all the methods and attributes of the "parent" class and add new attributes and
methods on your child class.

class Electric_Car(K

a specific kind of car
def init (, , ,):

initialize attributes
super(). ¢ ;
('byd', 'han', '2018")
0

Electric_Car(Car):

a specific kind of car

def __init_ (self,make,model,year):

initialize attributes
super().__init_ (make,model,year)
self.battery size=100

def describe battery(self):

shows battery's info
print(f'The size of the battery is {self.battery size}')

my byd=Electric_Car('byd', 'han', '2018")

my byd.describe battery()

class Car:

def init (self,make,model,year):

it describes the car
self.make=make
self.model=model
self.year=year
self.mileage_reading=0
def read_odometer(self):

it shows the mileage of the car
print(f'this car has {self.mileage reading}miles on it")
def increase_odometer(self,increment):

it increase the odometer

self.mileage reading increment

def gas_storage(self,gas_storage):

it shows the maximum storage
print(f'this car is equipped with {gas_storage} storage place')
class Electric_Car(Car):

a specific kind of car
def __init__ (self,make,model,year):

initialize attributes
super().__init__ (make,model,year)
self.battery size=100

def gas_storage(self,gas_storage):

bro, this is not a gas filled car

print('this car does not have a gas storage')
my_ byd=Electric_Car('byd', 'han', '2018")
my byd.gas storage(15)

when we add more details to the class we have, we may notice that there are more and
more information about certain subject. in situations like this, part of one class can be
written as a separate class. Later, we can use the new instance as an attribute of the
original class.

class Battery:

singles out battery as a class
def __init_ (self,volume=100):

initialize its attribute

self.volume=volume
def charge(self):

charge the battery
print('the battery is charging')

class Car:
def __init__ (self,make,model,year):

it describes the car
self.make=make
self.model=model
self.year=year
self.mileage reading=0
def read_odometer(self):

it shows the mileage of the car
print(f'this car has {self.mileage reading}miles on it"')
def increase_odometer(self,increment):

it increase the odometer
self.mileage_reading increment

def gas_storage(self,gas _storage):

it shows the maximum storage

print(f'this car is equipped with {gas_storage} storage place')

class Electric_Car(Car):

a specific kind of car

def __init_ (self,make,model,year):

initialize attributes
super(). (

. 0
def gas_storage()):

"""bro, this is not a gas filled car
print('this car does not have a gas storage')
('byd', 'han', '2018")

we can store classes in modules and import them whenever needed.

import

import

('byd','han','2018")

as we get more familiar with import, we could import a variety of outside resources in
python library to complement our own work.

