
9_classes
create and use a class
working with class and instance

set default value for an attribute
modify attribute value

directly
Use method to update
increment

Inheritance
init method for child class
new methods and attributes for child class
override method
instances as attributes

import class
import classes
import entire module

python library

create and use a class
class can represent a group of objects in which they all share certain attributes. so each
individual is already equipped with the general traits and can be further personalized.
A function that is a part of the class is a method

class Cat:
 """it imitates cats"""
 def __init__ (self, name, age):
 """provides name and age"""
 self.name=name
 self.age=age
 # you can replace self with any specific instances of the class. age and
name is the attributes assigned with this class.
 def being_cute(self):
 """cat will act cutely"""
 print(f'look how cute {self.name} are')
 # we assgin a method, being_cute(), to let the function perform certain
task.
my_cat=Cat('kelly','7')
print(my_cat.name)

working with class and instance
set default value for an attribute

modify attribute value
directly

Use method to update

#kelly
my_cat.being_cute()
#look how cute kelly are

#setting a default value does not require us to set up a parameter
class Car:
 def __init__(self,make,model,year):
 """it describes the car"""
 self.make=make
 self.model=model
 self.year=year
 self.mileage_reading=0
 def read_odometer(self):
 """it shows the mileage of the car"""
 print(f'this car has {self.mileage_reading}miles on it')
mycar=Car('audi','A4','2019')
mycar.read_odometer()

mycar.mileage_reading=66
mycar.read_odometer()

#or we could call a specific method to modify a value
class Car:
 def __init__(self,make,model,year):
 """it describes the car"""
 self.make=make
 self.model=model
 self.year=year
 self.mileage_reading=0
 def read_odometer(self):
 """it shows the mileage of the car"""
 print(f'this car has {self.mileage_reading}miles on it')
 def update_odometer(self,new_mileage):
 """enters the new mileage to update """
 self.mileage_reading=new_mileage

increment

Inheritance
if the class you want to create is similar with an existing class, you can use inheritance to
copy all the methods and attributes of the "parent" class and add new attributes and
methods on your child class.

init method for child class

mycar=Car('audi','A4','2019')
mycar.update_odometer(34)
mycar.read_odometer()
#this car has 34miles on it

#sometimes we only know the increment but not the final value we want
class Car:
 def __init__(self,make,model,year):
 """it describes the car"""
 self.make=make
 self.model=model
 self.year=year
 self.mileage_reading=0
 def read_odometer(self):
 """it shows the mileage of the car"""
 print(f'this car has {self.mileage_reading}miles on it')
 def increase_odometer(self,increment):
 """it increase the odometer"""
 self.mileage_reading+= increment
mycar=Car('audi','A4','2019')
mycar.increase_odometer(88)
mycar.read_odometer()
#this car has 88miles on it

#this time we want to create a child class, electric car, without adding any new
methods or attributes.
class Electric_Car(Car):
 """a specific kind of car"""
 def __init__(self,make,model,year):
 """initialize attributes"""
 super().__init__(make,model,year)
my_byd=Electric_Car('byd','han','2018')
my_byd.read_odometer()
#this car has 0miles on it

new methods and attributes for child class

override method

1. the child class has to include parent class in parentheses
2. we use super()to call the method in the "super class" and inherit it.

class Electric_Car(Car):
 """a specific kind of car"""
 def __init__(self,make,model,year):
 """initialize attributes"""
 super().__init__(make,model,year)
 self.battery_size=100
 def describe_battery(self):
 """shows battery's info"""
 print(f'The size of the battery is {self.battery_size}')
my_byd=Electric_Car('byd','han','2018')
my_byd.describe_battery()
#The size of the battery is 100

#some method may be obsolete. override it with a new method in child class.
class Car:
 def __init__(self,make,model,year):
 """it describes the car"""
 self.make=make
 self.model=model
 self.year=year
 self.mileage_reading=0
 def read_odometer(self):
 """it shows the mileage of the car"""
 print(f'this car has {self.mileage_reading}miles on it')
 def increase_odometer(self,increment):
 """it increase the odometer"""
 self.mileage_reading+= increment
 def gas_storage(self,gas_storage):
 """it shows the maximum storage"""
 print(f'this car is equipped with {gas_storage} storage place')
class Electric_Car(Car):
 """a specific kind of car"""
 def __init__(self,make,model,year):
 """initialize attributes"""
 super().__init__(make,model,year)
 self.battery_size=100
 def gas_storage(self,gas_storage):
 """bro, this is not a gas filled car"""

instances as attributes
when we add more details to the class we have, we may notice that there are more and
more information about certain subject. in situations like this, part of one class can be
written as a separate class. Later, we can use the new instance as an attribute of the
original class.

 print('this car does not have a gas storage')
my_byd=Electric_Car('byd','han','2018')
my_byd.gas_storage(15)
#this car does not have a gas storage

class Battery:
 """singles out battery as a class"""
 def __init__(self,volume=100):
 """initialize its attribute"""
 self.volume=volume
 def charge(self):
 """charge the battery"""
 print('the battery is charging')

class Car:
 def __init__(self,make,model,year):
 """it describes the car"""
 self.make=make
 self.model=model
 self.year=year
 self.mileage_reading=0
 def read_odometer(self):
 """it shows the mileage of the car"""
 print(f'this car has {self.mileage_reading}miles on it')
 def increase_odometer(self,increment):
 """it increase the odometer"""
 self.mileage_reading+= increment
 def gas_storage(self,gas_storage):
 """it shows the maximum storage"""
 print(f'this car is equipped with {gas_storage} storage place')

class Electric_Car(Car):
 """a specific kind of car"""
 def __init__(self,make,model,year):

import class
import classes
we can store classes in modules and import them whenever needed.

import entire module

python library
as we get more familiar with import, we could import a variety of outside resources in
python library to complement our own work.

 """initialize attributes"""
 super().__init__(make,model,year)
 self.battery=Battery()
 def gas_storage(self,gas_storage):
 """bro, this is not a gas filled car"""
 print('this car does not have a gas storage')
my_byd=Electric_Car('byd','han','2018')

my_byd.battery.charge()

#if you save your file as car.py and the class is Car
from car import Car
if you want to import multiple classes, juse use commas to separate
from car import Car, Electric_Car

import car
my_byd=car.Electric_Car('byd','han','2018')

